Subgraph Frequencies and Network Classification
نویسنده
چکیده
Current metrics used in summarizing networks, such as degree distribution, average diameter and clustering coefficient, provide a very coarse understanding of their structure. One would like to have finergrained summaries of networks which allow making distinction between structurally different networks. A class of such interesting graph statistics are the Small Subgraph Frequencies. These subgraph frequencies allow us to study the underlying structure of networks by distinguishing mathematical properties from social behavior related properties.
منابع مشابه
Optimal Coding Subgraph Selection under Survivability Constraint
Nowadays communication networks have become an essential and inevitable part of human life. Hence, there is an ever-increasing need for expanding bandwidth, decreasing delay and data transfer costs. These needs necessitate the efficient use of network facilities. Network coding is a new paradigm that allows the intermediate nodes in a network to create new packets by combining the packets recei...
متن کاملFault location and classification in non-homogeneous transmission line utilizing breaker transients
In this paper, a single-ended fault location method is presented based on a circuit breaker operation using the frequencies of traveling waves. The proposed method receives the required data from voltage traveling waves with the aid of Fast Fourier Transform (FFT) and Wavelet Transform. Then, the Artificial Neural Network (ANN) identifies fault type and determines its location. In order to eval...
متن کاملSubgraph covers - An information theoretic approach to motif analysis in networks
Many real world networks contain a statistically surprising number of certain subgraphs, called network motifs. In the prevalent approach to motif analysis, network motifs are detected by comparing subgraph frequencies in the original network with a statistical null model. In this paper we propose an alternative approach to motif analysis where network motifs are defined to be connectivity patt...
متن کاملCrack Detection of Timoshenko Beams Using Vibration Behavior and Neural Network
Abstract: In this research, at first, the natural frequencies of a cracked beam are obtained analytically, then, location and depth of a crack in beam is identified by neural network method. The research is applied on a beam with an open crack for three different boundary conditions. For this purpose, at first, the natural frequencies of the cracked beam are obtained analytically, to get the ex...
متن کاملEstimating Subgraph Frequencies with or without Attributes from Egocentrically Sampled Data
In this paper we show how to efficiently produce unbiased estimates of subgraph frequencies from a probability sample of egocentric networks (i.e., focal nodes, their neighbors, and the induced subgraphs of ties among their neighbors). A key feature of our proposed method that differentiates it from prior methods is the use of egocentric data. Because of this, our method is suitable for estimat...
متن کامل